3.122 \(\int \frac {1}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=104 \[ -\frac {i \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {i}{2 a d \sqrt {a+i a \tan (c+d x)}}+\frac {i}{3 d (a+i a \tan (c+d x))^{3/2}} \]

[Out]

-1/4*I*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/a^(3/2)/d*2^(1/2)+1/2*I/a/d/(a+I*a*tan(d*x+c))^(1
/2)+1/3*I/d/(a+I*a*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {3479, 3480, 206} \[ -\frac {i \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {i}{2 a d \sqrt {a+i a \tan (c+d x)}}+\frac {i}{3 d (a+i a \tan (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[c + d*x])^(-3/2),x]

[Out]

((-I/2)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(Sqrt[2]*a^(3/2)*d) + (I/3)/(d*(a + I*a*Tan[c +
 d*x])^(3/2)) + (I/2)/(a*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3479

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(a + b*Tan[c + d*x])^n)/(2*b*d*n), x] +
Dist[1/(2*a), Int[(a + b*Tan[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0]

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{(a+i a \tan (c+d x))^{3/2}} \, dx &=\frac {i}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {\int \frac {1}{\sqrt {a+i a \tan (c+d x)}} \, dx}{2 a}\\ &=\frac {i}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {i}{2 a d \sqrt {a+i a \tan (c+d x)}}+\frac {\int \sqrt {a+i a \tan (c+d x)} \, dx}{4 a^2}\\ &=\frac {i}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {i}{2 a d \sqrt {a+i a \tan (c+d x)}}-\frac {i \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{2 a d}\\ &=-\frac {i \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {i}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {i}{2 a d \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.58, size = 124, normalized size = 1.19 \[ \frac {5 e^{2 i (c+d x)}+4 e^{4 i (c+d x)}-3 e^{3 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \sinh ^{-1}\left (e^{i (c+d x)}\right )+1}{3 a d \left (1+e^{2 i (c+d x)}\right )^2 (\tan (c+d x)-i) \sqrt {a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[c + d*x])^(-3/2),x]

[Out]

(1 + 5*E^((2*I)*(c + d*x)) + 4*E^((4*I)*(c + d*x)) - 3*E^((3*I)*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcSi
nh[E^(I*(c + d*x))])/(3*a*d*(1 + E^((2*I)*(c + d*x)))^2*(-I + Tan[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

fricas [B]  time = 0.44, size = 272, normalized size = 2.62 \[ \frac {{\left (-3 i \, \sqrt {\frac {1}{2}} a^{2} d \sqrt {\frac {1}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{3} d^{2}}} + a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + 3 i \, \sqrt {\frac {1}{2}} a^{2} d \sqrt {\frac {1}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{3} d^{2}}} - a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (4 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 5 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i\right )}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{12 \, a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/12*(-3*I*sqrt(1/2)*a^2*d*sqrt(1/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(4*(sqrt(2)*sqrt(1/2)*(a^2*d*e^(2*I*d*x +
2*I*c) + a^2*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^3*d^2)) + a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + 3
*I*sqrt(1/2)*a^2*d*sqrt(1/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(-4*(sqrt(2)*sqrt(1/2)*(a^2*d*e^(2*I*d*x + 2*I*c)
+ a^2*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^3*d^2)) - a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + sqrt(2)*
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(4*I*e^(4*I*d*x + 4*I*c) + 5*I*e^(2*I*d*x + 2*I*c) + I))*e^(-3*I*d*x - 3*I*c
)/(a^2*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(-3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.12, size = 78, normalized size = 0.75 \[ \frac {2 i a \left (\frac {1}{4 a^{2} \sqrt {a +i a \tan \left (d x +c \right )}}+\frac {1}{6 a \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}-\frac {\sqrt {2}\, \arctanh \left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{8 a^{\frac {5}{2}}}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

2*I/d*a*(1/4/a^2/(a+I*a*tan(d*x+c))^(1/2)+1/6/a/(a+I*a*tan(d*x+c))^(3/2)-1/8/a^(5/2)*2^(1/2)*arctanh(1/2*(a+I*
a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2)))

________________________________________________________________________________________

maxima [A]  time = 0.93, size = 94, normalized size = 0.90 \[ \frac {i \, {\left (\frac {3 \, \sqrt {2} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right )}{\sqrt {a}} + \frac {4 \, {\left (3 i \, a \tan \left (d x + c\right ) + 5 \, a\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\right )}}{24 \, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/24*I*(3*sqrt(2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*x + c)
 + a)))/sqrt(a) + 4*(3*I*a*tan(d*x + c) + 5*a)/(I*a*tan(d*x + c) + a)^(3/2))/(a*d)

________________________________________________________________________________________

mupad [B]  time = 3.99, size = 83, normalized size = 0.80 \[ \frac {\frac {1{}\mathrm {i}}{3\,d}+\frac {\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{2\,a\,d}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}-\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {-a}}\right )\,1{}\mathrm {i}}{4\,{\left (-a\right )}^{3/2}\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

(1i/(3*d) + ((a + a*tan(c + d*x)*1i)*1i)/(2*a*d))/(a + a*tan(c + d*x)*1i)^(3/2) - (2^(1/2)*atan((2^(1/2)*(a +
a*tan(c + d*x)*1i)^(1/2))/(2*(-a)^(1/2)))*1i)/(4*(-a)^(3/2)*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (i a \tan {\left (c + d x \right )} + a\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral((I*a*tan(c + d*x) + a)**(-3/2), x)

________________________________________________________________________________________